BRIEF COMMUNICATIONS

POLYPHENOLS OF CERTAIN PLANTS OF THE EUPHORBIACEAE FAMILY

N. G. Abdulladzhanova, S. M. Mavlyanov, and D. N. Dalimov

Spurges are known to be a poisonous plants. However, most compounds occuring in them are biologically active. The polyphenol composition of various Euphorbiaceae species is under intense scrutiny abroad. They possess antitumor [1], antiviral [2], antioxidant [3], antidiuretic [4], antidiarrhetic [5], and other activities. Plants of the Euphorbiaceae family are also promising sources of high-quality tanning agents for the leather industry [6].

The Euphorbiaceae family includes about 160 species, of which 33 grow in Uzbekistan. We previously studied polyphenols from roots of *Euphorbia ferganensis* B. Fedtsch. [7] and found that their content in the roots reaches 9.1%. They include quercetin, quercetin-3-O-rhamnoside, kaempferol-3-glucoside, 1,2,3-tri-O-galloyl- β -D-glucose, 2,3-di-O-galloyl- β -D-glucose, 3-O-galloyl-4,6-hexahydroxydiphenoyl- β -D-glucose, 1-O-galloyl-4,6-trihydroxy-3,4,3'-trimethoxydiphenoyl- β -D-glucose, geraniin, and gallic acid.

We are now studying polyphenols from various *Euphorbia* species growing in the Fergan valley. Qualitative reactions and paper chromatography (PC) (BAW, *n*-butanol:acetic acid:water, 40:12:28) showed that the polyphenols from roots and leaves include hydrolyzed tanning agents {FeCl₃(1%) + K₃[Fe(CN)₆](1%)}. Tannins from stems are condensed tanning agents [vanillin (1%) in HCl (conc.)], mainly (+)-catechin, (-)-epicatechin, (±)-gallocatechin, and traces of proanthocyanidins.

Furthermore, two-dimensional PC using BAW and $CH_3CO_2H(6\%)$ found that flavonols are present in small quantities (up to 0.4%) in the aerial parts of the plants. Quercetin and its glycosides were observed in all studied species; myricetin and isomyricetin, in *E. lamprocarpus* Prokh., *E. glomerulans* Prokh., and *E. falcata* L.; kaempferol and its glycosides, in *E. jaxartica* Prokh., *E. lamprocarpus* Prokh., *E. inderersis* Less., *E. szovitsii* F. et M., and *E. turkestanicus* Rgl.

The observations showed that 3-O-galloyl-4,6-hexahydroxydiphenoyl- β -D-glucose, 1-O-galloyl-4,6-trihydroxy-3,4,3'trimethoxydiphenoyl- β -D-glucose, and geraniin predominate in roots of *E. ferganensis* B. Fedsch. Other plants contain other compounds, e.g., quercetin, quercetin-3-O-rhamnoside, keampferol-3-glucoside, and geraniin in *E. szovitsii* F. et M.; quercetin-3-galactoside, kaempferol, gallic acid, and 2,3-digalloyl- β -D-glucose in *E. jaxartica* Prokh.; and quercetin, quercetin-3-Oglucoside, and 1,2,3-tri-O-galloyl- β -D-glucose in *E. helioscopus* L., etc. (Table 1).

The content of tanning agents in individual plant organs was determined colorimetrically [8]. It was found that the amount of tanning agents in the roots varies from 6.3 to 12.1%; in leaves, from 3.3 to 5.3%; in stems, from 0.6 to 1.4% (Table 2).

UDC 547.982/83/84

A. S. Sadykov Institute of Bioorganic Chemistry, Academy of Sciences of the Republic of Uzbekistan, Tashkent, fax (99871) 162 70 71. Translated from Khimiya Prirodnykh Soedinenii, No. 4, pp. 322-323, July-August, 2003. Original article submitted July 10, 2003.

TABLE 1. Composition of Polyphenols from Plants of the Euphorbiaceae Family

Plant	Substances Found		
E. lamprocarpus Prokh.	Quercetin, kaempferol and their glycosides; myricetin; isomyricetin; gallic acid; dehydroellagitannin; 1,6-di-O-galloyl-β-D-glucose; geraniin		
E. helioscopus L.	Quercetin and its glycosides; brevifolin; protocatechuic acid; gallic acid; 1,2,3-tri-O-galloyl- β -D-glucose; corilagin; unidentified compound		
E. turkestanicus Rgl.	Quercetin, kaempferol and their glycosides; protocatechuic acid; gallic acid; geraniin; terchebin; 1-O-galloyl-4,6-hexahydroxydiphenoyl- β -D-glucose; two unidentified compounds		
E. glomerulans Prokh.	Quercetin and its glycosides; myricetin; isomyricetin; brevifolic acid; gallic acid; dehydrogallic acid; terchebin; 2,3-di-O-galloyl- β -D-glucose; unidentified compound		
E. jaxartica Prokh.	Quercetin, keampferol and their glycosides; gallic acid; protocatechuic acid; geraniin; corilagin; 1.2.3-tri-O-galloyl-β-D-glucose; two unidentified compounds		
E. falcata L.	Quercetin and its glycosides; myricetin; isomyricetin; gallic acid; 1-O-galloyl- β -D-glucose; 1-O-galloyl-4,6-hexahydroxydiphenoyl- β -D-glucose		
E. inderiensis Less.	Quercetin, kaempferol and their glycosides; gallic acid; 1,2,3-tri-O-galloyl- β -D-glucose		
E. szovitsii F. et. M.	Quercetin, keampferol and their glycosides; gallic acid; terchebin; corilagin; geraniin; 1,4,6-tri-O-galloyl- β -D-glucose		

TABLE 2. Content (%) of Tanning Agents in Plants of the Euphorbiaceae Family

Plant	Roots	Leaves	Stems
E. lamprocarpus Prokh.	12.10	5.1	2.0
E. helioscopus L.	7.6	4.55	1.3
E. turkestanicus Rgl.	9.77	2.75	1.05
E. glomerulans Prokh.	9.1	5.62	3.0
E. jaxartica Prokh.	8.92	6.67	1.98
E. falcata L.	11.72	5.35	1.35
E. inderiensis Less.	13.22	6.0	2.12
E. szovitsii F. et. M.	8.05	6.24	2.45

REFERENCES

- 1. J. Bromser, D. L. Madhavi, K. Singletary, and M. A. Smith, *Planta Med.*, **62**, 212 (1996).
- 2. D. Hauser, Fr. Pat. 8715370 (1989); Ref. Zh. Khim., 6 0209P (1989).
- 3. B. Petsiar and D. Koshtyalova, *Slovakofarma Revyu VIII*, **2**, 53 (1998).
- 4. T. Yoshida, L. Chen, T. Shingu, and T. Okuda, *Chem. Pharm. Bull.*, **36**, 2940 (1988).
- 5. I. Agata, T. Hatano, Y. Nakaya, T. Sugaya, T. Yoshida, S. Nishibe, and T. Okuda, *Chem. Pharm. Bull.*, **39**, 881 (1991).
- N. G. Abdulladzhanova, S. M. Mavlyanov, D. N. Dalimov, and Sh. V. Abdullaev, *Dokl. Akad. Nauk Resp. Uzb.*, 9, 47 (2000).
- 7. N. G. Abdulladzhanova, S. M. Mavlyanov, and D. N. Dalimov, *Khim. Prir. Soedin.*, 167 (2001).
- 8. N. G. Abdulladzhanova, S. M. Mavlyanov, and Sh. V. Abdullaev, Uzb. Khim. Zh., No. 2, 41 (2001).